domingo, 24 de abril de 2016

Unidad 6 Física y tecnología contemporáneas

6.12 Física Solar

La Tierra está inmersa en la atmósfera externa ionizada que escapa supersónicamente del Sol.  Este ″viento  solar,″ fluye a través del medio interplanetario alcanzando el campo magnético  terrestre dándole forma al medio-ambiente cercano a  la Tierra.  La burbuja magnética que se produce, llamada  "magnetosfera," ya que es modelada básicamente a partir del campo magnético terrestre por el campo magnético interplanetario, actúa como blindaje que protege  su interior (nuestra atmósfera superior junto a su región ionizada, la ionosfera) de los efectos directos del viento solar.
El Sol, que es la mayor fuente de energía del Sistema Solar, libera su energía en forma de radiación electromagnética("luz") y de partículas energéticas. De esta manera, por una parte, el Sol ilumina constantemente a la Tierra proporcionándole un flujo de energía de 1367 W/m2, conocida como la constante solar; a la vez que, por otro lado, su atmósfera (la corona solar, demasiado caliente como para ser retenida por el campo gravitacional) se proyecta de tal manera que la Tierra es influenciada por el viento solar a través de un flujo continuo de partículas, como también de sucampo magnético asociado.
La radiación electromagnética resulta ser varios órdenes de magnitud mayor que la radiación de las partículas. La potencia de entrada en la Tierra,  debida a la iluminación, considerando una sección eficaz ðRE 2, donde RE es el radio terrestre medio, es de 1.73x1017 W.
La energía del viento solar que incide sobre la magnetosfera terrestre, cavidad formada por la interacción entre el campo geomagnético aproximadamente dipolar y el viento solar que tiene asociado el campo magnético interplanetario (ver figura previa),  es del orden de 1.3x 1013 W, considerando una sección eficaz de radio igual a 15 RE [Hill, 1979]. Para una sección eficaz de un disco de radio terrestre que absorbe toda la energía cinética del viento solar  incidente, esto es en  ausencia de campo geomagnético, la potencia seria del orden de 5.7 x 1010 W. 
A pesar de la gran diferencia entre los valores de las potencias disponibles en las vecindades de la Tierra a través de las dos formas de radiación, es el viento solar el encargado de acoplar la atmósfera solar con la magnetosfera y la ionosfera
 (región ionizada de la atmósfera) terrestre, y la mayoría de los procesos magnetoséricos e ionosféricos asistidos por la magnetosfera son debidos a esta energía.
La fuente del viento solar es la  corona cuya energía proviene de la zona de convección solar  Debido al enorme gradiente de temperatura entre la base de la corona y la zona de  transición, la mayor parte de la energú} depositada en la corona es conducida  en dirección a la cromosfera  la cual es energizada de esta manera. Otra  parte de la corona, la cual está estructurada de  campos magnéticos muy intensos, está constantemente escapando del campo gravitacional del Sol  a lo largo de las líneas de campo abiertas, huecos coronales (coronal holes)   y llamaradas(flares),  es lo que se conoce como  viento solar. Esta parte esá constituida principalmente  de hidrógeno, 96%,y helio, 3.2%, ionizados. El 0.8% restante está constituido por elementos altamente ionizados como   O, N, C, Si, Fe  [Schwenn, 1988].
Un tipo de evento solar es la llamada   llamarada  solar "solar flare" debido a que el abrillantamiento de una pequeña área en el Sol anuncia su ocurrencia.
La magnetosfera terrestre es la región que mas se ha estudiado en Física Espacial, conformando la Física Magnetosférica la parte central de la Física Solar-Terrestre, donde resulta crucial el estudio de las tempestades y subtempestades magnéticas. Sin embargo, aun no se ha establecido un modelo suficientemente consistente para predecir su comportamiento,  y entender los procesos claves que constituyen las conexiones entre el Sol y la Tierra, esto es del Clima Espacial. 
A medida que estén disponibles mas y mas observaciones, los modelos globales del sistema viento solar - magnetosfera - ionosfera - atmósfera podrán ser desarrollados, refinados   y  mejorados cada vez mas hasta el punto en que se podrían realizar predicciones útiles de manera rutinaria.
http://samuel-fsica1.blogspot.mx/2011/04/es-la-rama-de-la-estudia-los-fenomenos.html

Unidad 6 Física y tecnología contemporáneas



6.11 Radioisotopos

Se llama radioisótopo o radionúcleo a aquel isótopo que es radiactivo. La palabra isótopo, del griego "en mismo sitio", se usa para indicar que todos los tipos de átomos de un mismo elemento químico se encuentran en el mismo sitio de la tabla periódica. Los átomos que son isótopos entre sí, son los que tienen igual número atómico (número de protones en el núcleo), pero diferente número másico (suma de número de neutrones y el de protones en el núcleo). Los distintos isótopos de un elemento, difieren pues en el número de neutrones. Hay varios tipos de isótopos los cuales aún no tienen un nombre fijo ya que cambian constantemente.

     
Una especie atómica viene definida por dos números enteros: el número de protones que hay en el núcleo (llamado número atómico, Z) y el número total de protones más neutrones (llamado número másico, A).
Se entiende por isótopos los átomos de un elemento con el mismo número atómico pero con distinta masa atómica, es decir, con el mismo número de protones y por tanto idénticas propiedades químicas, pero distinto número de neutrones y diferentes propiedades físicas. Los isótopos pueden ser estables e inestables o radioisótopos, teniendo los núcleos de éstos últimos la propiedad de emitir energía en forma de radiación ionizante a medida que buscan una configuración más estable.
https://es.wikipedia.org/wiki/Radiois%C3%B3topo
http://www.foronuclear.org/es/el-experto-te-cuenta/119966-ique-son-los-radioisotopos

Unidad 6 Física y tecnología contemporáneas

6.10 Física Nuclear

La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas. Asimismo, la física nuclear es conocida mayoritariamente por la sociedad, por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión nuclear como de fusión nuclear.
La radiactividad fue descubierta en las sales de uranio por el físico francés Henri Becquerel en 1896.
En 1898, los científicos Marie y Pierre Curie descubrieron dos elementos radiactivos existentes en la naturaleza, el polonio (84Po) y el radio (88Ra).
En 1913 Niels Bohr publicó su modelo de átomo, consistente en un núcleo central compuesto por partículas que concentran la práctica mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100 000 veces menor que el átomo.
Ernest Rutherford en el año 1918 definió la existencia de los núcleos de hidrógeno. Rutherford sugirió que el núcleo de hidrógeno, cuyo número atómico se sabía que era 1, debía ser una partícula fundamental. Se adoptó para esta nueva partícula el nombre deprotón sugerido en 1886 por Goldstein para definir ciertas partículas que aparecían en los tubos catódicos.
Durante la década de 1930Irène y Jean Frédéric Joliot-Curie obtuvieron los primeros nucleidos radiactivos artificiales bombardeando boro (5B) y aluminio (13Al) con partículas α para formar isótopos radiactivos de nitrógeno (7N) y fósforo (15P). Algunos isótopos de estos elementos presentes en la naturaleza son estables. Los isótopos inestables se encuentran en proporciones muy bajas.
En 1932 James Chadwick realizó una serie de experimentos con una radiactividad especial que definió en términos de corpúsculos, o partículas que formaban esa radiación. Esta nueva radiación no tenía carga eléctrica y poseía una masa casi idéntica a la del protón. Inicialmente se postuló que fuera resultado de la unión de un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron esta idea llegando a la conclusión de que era una nueva partícula procedente del núcleo a la que se llamó neutrones.
Los científicos alemanes Otto Hahn y Fritz Strassmann descubrieron la fisión nuclear en 1938. Cuando se irradia uranio con neutrones, algunos núcleos se dividen en dos núcleos con números atómicos. La fisión libera una cantidad enorme de energía y se utiliza en armas y reactores de fisión nuclear.
https://es.wikipedia.org/wiki/F%C3%ADsica_nuclear

Recapitulación 14

SEMANA14
SESIÓN
42
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
RECAPITULACION 14

Aprendizajes esperados del grupo
Conceptuales
·         Comprenderá las características de la Física solar, nuclear y los radioisótopos.
Procedimentales
·       Elaboración de resúmenes y de conclusiones.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la información recabada en las dos sesiones anteriores.



Desarrollo del proceso
FASE DE APERTURA 
- Cada equipo realizara una autoevaluación de los temas aprendidos en las dos sesiones anteriores.
1. ¿Qué temas se abordaron?
2.  ¿Que aprendí?
 3. ¿Qué dudas tengo?
Equipo
1
2
3
4
5
6
Respuesta
1. Abarcamos el tema de la física nuclear y algunos conceptos relacionados con este tema como la radiación y los radiosotopos.
2. Aprendimos sobre la radiación así como cuál es la manera para medirla y conocimos el instrumento a utilizar para el mismo ejercicio.
3. No hay dudas J
1. Que son los radioisotopos y para que se aplican,  la física nuclear, la radiación, la física solar.
2. Aprendimos a usar un monitor de radiación, cuantas partículas por minuto tenían ciertos materiales,  para que se aplican los radioisotopos, que es la física solar y nuclear.
3.No hay dudas
1. Fisica Nuclear, Solar y Radioisótopos.
2.Aprendimos lo que es la energía nuclear y solar así como sus aplicaciones, que son los radioisótopos y a medir la radiación de diversos materiales con un monitor de radiación.
3. No hay dudas.
1.- temas Física nuclear y sobre radioisótopos.
2.-Aprendimos sobre los radiosótopos, cuales son los importantes en México y los estudios que se han hecho sobre ello.
2.- No tenemos dudas.
1.- Las diferentes ramas de la física, como la física nuclear y la solar. También se habló de los radioisótopos y los usos que estos poseen en la actualidad.
2.-Cuales son los usos de los radioisótopos, principalmente en la producción de energía y como se puede calcular la radioactividad de un cuerpo usando un monitor de radiación.
3.- No hay dudas.
1.- Se abordaron los temas siguientes:
-física nuclear
- Radioisótopos
-física solar
2.- que es la física nuclear y sus aplicaciones que son los radioisótopos y para qué sirven  y como se utiliza la física solar.
3 no hay dudas 

FASE DE DESARROLLO
- Les solicita que un alumno de cada equipo  lea el resumen elaborado.
- El Profesor pregunta acerca de las dudas que tengan acerca de los temas vistos en las dos sesiones anteriores, Física nuclear, Física Solar y Radioisótopos.
FASE DE CIERRE 
El Profesor concluye con un repaso de la importancia de la Física nuclear, Física Solar y Radioisótopos.
Revisa el trabajo a cada alumno y lo registra en la lista.
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas siguientes de acuerdo al cronograma, solicitándoles que incluyan fotos de los experimentos en el Blog que contendrá su información, asimismo se les solicitara que los equipos formados, se comuniquen vía e-mail u otro  programa para comentar y analizar los resultados para presentarla al Profesor en la siguiente clase.
Los alumnos que tengan PC y Programas elaboraran su informe, empleando el programa  Word, para registrar los resultados.  
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.
Referencias
Visita virtual a:
Planta Nuclear Laguna Verde Veracruz
 Instituto de energía nuclear, IIE
Instituto Nacional de Investigaciones Nucleares  ININ,
 Centro de Investigación de Energía CIE Temixco.

Sesión 41 Física y tecnología contemporánea

SEMANA14
SESIÓN
41
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
6.11 Radioisótopos
6.12 Física Solar

Aprendizajes esperados del grupo
Conceptuales
·         Cita las principales aplicaciones de los isótopos radiactivos y su impacto en la sociedad.
·         Explica la producción de la energía en el Sol debida a reacciones de fusión.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Realización de actividades experimentales.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Presentación de la indagación bibliográfica de acuerdo al  programa del curso.
De Laboratorio:
Contador de partículas Geiger, piedra de Rio, piedra volcánica, mármol, termómetro.



Desarrollo del proceso
FASE DE APERTURA
-          El Profesor solicita a los equipos de trabajo que contesten las preguntas siguientes:

Preguntas
¿Qué es un radioisótopo?
¿Cómo se generan los  radioisótopos radiactivos?
¿Cuáles son los radioisótopos más usados en México?
¿Qué aplicaciones tienen los radioisótopos?
¿Qué es el ININ y sus principales actividades?
¿Qué estudia la Física Solar?
Equipo
3
2
6
4
1
5
Respuesta
Es el isotopo de un elemento que presenta radiactividad. Esto quiere decir que el isotopo en cuestión resulta radiactivo.
La produccion consiste en atacar con un haz de partículas un elemento natural denominado blanco durante un cierto tiempo. Ese haz de partículas está formado por “proyectiles” que al impactar sobre los núcleos de los átomos del blanco produce cambios que los transforman en un elemento radioactivo.
Una de las aplicaciones más interesantes de los radioisótopos como trazadores corresponde al estudio del aprovechamiento de los fertilizantes en las plantas.emitida por el fósforo-32 
el empleo de trazadores radiactivos permite conocer el contenido y el origen del agua, la velocidad y dirección del flujo, la relación entre el depósito y las aguas superficiales, las posibles conexiones entre acuíferos, etc.Uno de los radioisótopos más usados en estos estudios es el tritio (hidrógeno-3).
El estudio de isótopos naturales presentes en el agua se basa en la capacidad técnica de detectar pequeñísimos cambios en la concentración de deuterio (hidrógeno-2) y de oxígeno-18, ambos presentes naturalmente en el agua junto a los isótopos más abundantes hidrógeno-1 y oxígeno-16.
Los radioisótopos tienen diferentes aplicaciones, pero tres son las fundamentales como:
- Fuente de energía.
- Investigaciones científicas.
- Aplicaciones médicas.

El Instituto Nacional de Investigaciones Nucleares (ININ) es una institución del estado mexicano, dependiente de laSecretaría de Energía (México).
Fue fundado el 1 de enero de 1956 bajo el nombre de Comisión Nacional de Energía Nuclear (CNEN). Se encuentra ubicado en el km. 36.5 de la Carretera México-Toluca s/n, La Marquesa, municipio de Ocoyoacac, estado de México.

El ININ realiza investigación y desarrollo en el área de la ciencia y tecnología nucleares y proporciona servicios especializados y productos a la industria en general y a la rama médica en particular.
Es la rama de la astrofísica que se especializa en el estudio del sol. Estudia con mediciones detalladas que sólo son posibles o aplicables para nuestra estrella más cercana.

-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
FASE DE DESARROLLO
-          El Profesor solicita a los alumnos que  desarrollan las actividades siguientes:
-          Solicitar el material requerido para realizar las actividades siguientes:
Con el contador de partículas Geiger, encontrar la distancia máxima  para detectar las partículas emitidas por cada muestra de material.
Con el termómetro medir la temperatura inicial del hueco de la piedra volcánica, calentar el hueco de la piedra volcánica con la energía solar haciendo coincidir el foco de la lupa en el hueco de piedra durante tres minutos.
 Tabular y graficar los datos.
Equipo
Piedra de rio
Piedra volcánica
Cerámica
1
21
25
24
2
22
19
21
3
22
25
21
4
18
20
17
5
26
25
28
6
27
29
16



-          Tabulan y grafican los datos obtenidos para obtener sus
               Conclusiones:
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.

Sesión 40 Física y tecnología contemporáneas

SEMANA14
SESIÓN
40
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
Aplicaciones de Física contemporánea
contenido temático
6.10 Física Nuclear

Aprendizajes esperados del grupo
Conceptuales
  • Describe algunas aplicaciones y contribuciones de la física moderna al desarrollo científico y tecnológico
  • Describe los procesos de fisión y fusión.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo.
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagaciones bibliográficas referentes al tema.



Desarrollo del proceso
FASE DE APERTURA
-          El Profesor solicita a los equipos de trabajo que contesten las preguntas siguientes:
Pregunta
¿Qué estudia la Física Nuclear?
¿Cómo está conformado un núcleo atómico?
¿Qué tipos de energías se generan en los  núcleos atómicos?
¿Qué es una central nuclear?
¿En qué consiste una fisión nuclear?
¿En qué consiste una fusión nuclear?
Equipo
3
2
4
1
5
6
Respuesta
Es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. También estudia la estructura fundamental de la materia y las interacciones entre partículas subatómicas.
Las principales partículas subatómicas de los núcleos de los átomos són los protones y los neutrones o los nucleones (excepto el del hidrógeno ordinario o protio, que contiene únicamente un protón). 
 la obtención de energía eléctrica, energía térmica energía mecánica a partir de reacciones atómicas, y su aplicación, bien sea con fines pacíficos o bélicos.
Una central nuclear es una instalación para la obtención de energía eléctrica utilizando energía nuclear. Su funcionamiento es similar al de una central térmica
En que el núcleo de un átomo se divide en núcleos más pequeños, así como en algunos subproductos más pequeños, liberando una gran cantidad de energía en el proceso.
La fusión nuclear es una reacción en la que se unen dos núcleos ligeros para formar uno más pesado.
Este proceso desprende energía porque el peso del núcleo pesado es menor que la suma de los pesos de los núcleos más ligeros. Este defecto de masa se transforma en energía (relacionadas mediante la fórmula E = mc2), aunque el defecto de masa es muy pequeño y la ganancia por tanto es muy pequeña, se ha de tener en cuenta que es una energía muy concentrada, en un gramo de materia hay millones de átomos, con lo que con una pequeña cantidad de combustible proporciona mucha energía.


-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
FASE DE DESARROLLO
              Los alumnos desarrollan las actividades de acuerdo a las indicaciones del Profesor
-          El Profesor solicita a los alumnos abrir la página en Internet:
             para realizar las actividades siguientes:
  • Ilustrar el carácter aleatorio de la desintegración radioactiva.
  • Definir la vida media de tres radio nucleídos representativos.
  • Conectar el Becquerel y los procesos de desintegración.
  • Visualizar la evolución temporal de la ley de decrecimiento exponencial.
  • ¿
Visita virtual Laguna Verde Veracruz:
https://www.youtube.com/watch?v=ETwv7Nxhbbs
https://www.youtube.com/watch?v=8DwLtyWMPXY
https://www.youtube.com/watch?v=oI9PVIwu_Fs
https://www.facebook.com/137951192918243/videos/vb.137951192918243/807892452590777/?type=2&theater
-          El método permitirá a los alumnos, tener un panorama de los temas que se desarrollaran durante el curso.(Que, cuando, como y donde) 
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe  de la actividad publicada en el Blog
    Contenido:
    Resumen de la Actividad.